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Deoxy sugars are widespread in nature as both bio-
synthetic intermediates and components of biologically
active natural products.1-3 Deoxy sugars have been
prepared by reductive deoxygenation of suitably activated
sugar derivatives4,5 and by total synthesis.6,7 Dihydroxy-
acetone phosphate (DHAP)-utilizing aldolases have been
used for the synthesis of ketose sugars with a deoxy
carbon at C-5 or higher using appropriate aldehyde
substrates in the aldolase reaction.8,9 Similarly, ketose
sugars with a deoxy carbon at C-4 or higher have been
prepared using transketolase.10 An inverted strategy has
been used to prepare 2-deoxyaldohexoses using aldolase
catalysis.11,12 Some additional 2-deoxy sugars have been
prepared using deoxyribose 5-phosphate aldolase or a
pyruvate-utilizing aldolase followed by decarboxylation,
though neither of these aldolases give the high activities
with a wide range of aldehyde substrates characteristic
of the DHAP-utilizing aldolases.13,14 We describe here
the use of aldolase-catalyzed synthesis of 1-deoxy-1-
thioketose sugars as a novel entry into classes of deoxy
sugars not previously accessible by enzymatic methods.
We recently reported the synthesis of the 1-thio analog

1 of dihydroxyacetone phosphate.15 Subsequently, we
and others have demonstrated the use of 1 as a substrate
for fructose diphosphate aldolase in enzymatic carbohy-
drate synthesis.16,17 We further envisioned that use of 1
in aldolase-catalyzed reactions followed by desulfuriza-
tion with Raney nickel could provide access to deoxy
sugars. As an initial deoxy sugar target we chose
1-deoxy-D-xylulose (2). This deoxy sugar is an intermedi-

ate in the biosynthesis of thiamine and pyridoxine and
has been used in studies of the enzymology of the
biosynthesis of these biological cofactors.18-22 Condensa-
tion of 1 with glycoaldehyde 3 catalyzed by fructose
diphosphate aldolase formed 1-deoxy-1-thio-D-xylulose
1-phosphate (4) (Scheme 1). Progress of the reaction was
monitored by enzymatic assay of 115 and by 31P-NMR
analysis of the reaction mixture.23 The product 4 was
not isolated but subjected to acid-catalyzed hydrolysis of
the thiophosphate and reaction with benzyl bromide to
give 1-deoxy-1-thio-D-xylulose as the benzyl sulfide de-
rivative 5, in 23% overall yield from 1.24 The benzyl
group provided a handle for purification and character-
ization of the product. The ethyl glycoside 6 was formed
as a mixture of anomers in 52% yield. Subsequent Raney
nickel reduction formed the ethyl glycoside of 1-deoxy-
D-xylulose 7 in 76% yield. Hydrolysis with aqueous acid
gave compound 2 in 46% yield, which gave spectral data
in full agreement with that previously reported.25,26

To further demonstrate the versatility of this route to
deoxy sugars, we undertook the synthesis of a 2,6-dideoxy
sugar. Several 2,6-dideoxyaldohexoses occur as compo-
nents of natural bioactive compounds, including antibiot-
ics and cardiac glycosides.27,28 These sugars have not
previously been available by enzymatic methods. To
address this problem, the half-protected malonic dialde-
hyde 8 was used in the FDP aldolase-catalyzed conden-
sation with the thiophosphate substrate 1 (Scheme 2).
The aldehyde 8 has previously been used in aldolase
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reactions with DHAP in the inverted strategy for aldose
synthesis.11 The product 9 was not isolated but was
subjected to sodium borohydride reduction followed by
acid-catalyzed hydrolysis of the thiophosphate ester
under mild conditions to avoid acetal hydrolysis. Sub-
sequent reaction with acetic anhydride in pyridine gave
a mixture of the acetylated products 10a and 10b. The
two isomers, formed in a 2:1 ratio as determined by 1H-
NMR integration of crude product, were separated by
chromatography on silica gel. The configuration at C-2
was assigned by analysis of the vicinal proton coupling
constants.29 The major isomer 10a was reduced with
Raney nickel to give 11 in 70% yield. Deacetylation with
sodium methoxide in methanol gave 12 in 95% yield.
Acetal cleavage was performed with HCl in methanol to
give the dideoxy sugar as the R-methyl glycoside 13 in
56% yield. Methyl glycoside formation facilitated product

isolation and characterization. The R-methyl glycoside
of 2,6-dideoxy-D-glucose 13 (also known as D-olivose or
systematically as 2,6-dideoxy-D-arabino-hexose) gave
spectral data identical with that previously reported.30,31

As C-1 through C-3 of the products of DHAP-utilizing
aldolases always arise from DHAP and C-4 from an
aldehyde carbonyl carbon, aldol reactions with DHAP
offer variability in functionality only at C-5 and higher.9
The inverted strategy reverses the situation so that the
four carbons farthest from C-1 are defined, with variable
substitution possible at the lower number carbons (e.g.,
C-1 and C-2 of a hexose) depending on the aldehyde
substrate.11,12 Reactions with the thio analog of DHAP
now permit added variability of functionality at a position
that always bears a hydroxyl group when DHAP is used
as substrate. This provides additional flexibility in the
enzymatic synthesis of deoxy sugars, as demonstrated
here in the synthesis of a 1-deoxyketopentose and a 2,6-
dideoxyaldohexose. Extension of this methodology to all
four DHAP-utilizing aldolases9 and a range of aldehyde
substrates should provide entry into a wide variety of
deoxy sugars not previously accessible by enzymatic
methods. Work is underway to develop further applica-
tions of enzymatically prepared deoxythioketoses as
synthons for a variety of sugar structures.
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